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The phase structure of the optical field diffracted from a straightedge has been measured using an ac inter-
ferometer. The measured phase distribution is in good agreement with the predictions of scalar diffraction
theory.

Introduction

Although diffraction phenomena have been observed
for several centuries and are qualitatively well under-
stood, careful measurements of the diffracted field at
optical wavelengths are rather lacking. Diffraction
phenomena have been studied in detail at microwave
frequencies by Farnell' and by others,2 and good
agreement with theory is found. At optical wave-
lengths, diffraction theory becomes more complicated
because of the difficulty in determining the proper
boundary conditions for the optical field. Many prac-
tical problems involve diffraction from apertures in
blackened screens, but the concept of blackness is not
readily described in terms of conventional boundary
conditions. Furthermore, most careful studies of dif-
fraction effects at optical wavelengths3 have been con-
fined to measurements of the field intensity, whereas
a complete experimental study of diffraction effects
requires the study of both the phase and amplitude of
the field.

Detailed measurements of the optical field for various
diffraction geometries would be useful in choosing be-
tween different theories of diffraction effects. Within
the framework of scalar diffraction theory, for example,
the Kirchhoff and Rayleigh-Sommerfeld theories pre-
dict substantially different angular dependences to the
diffracted light intensity at large diffraction angles.
Although the Kirchhoff theory has been criticized by
some as being mathematically inconsistent,4 others
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claim that in fact the Kirchhoff theory more accurately
predicts the field diffracted from a black screen.5 No
experimental studies have been performed which would
discriminate between these theories for diffraction by
black objects. Electromagnetic diffraction theories
predict even more complex diffraction effects than ei-
ther the Kirchhoff or the Rayleigh-Sommerfeld theories
and at optical wavelengths have been inadequately
tested by experiment.

We present here a technique for studying diffraction
effects by the measurement of the phase of the optical
field by ac interferometry, and we demonstrate this
technique by measuring the field resulting from Fresnel
diffraction by a straightedge. Our measurement thus
complements the more usual measurements of the in-
tensity of the diffracted light, The measurement was
made under conditions whereby no discrimination be-
tween competing theories was expected, and in fact our
results are consistent with a simple theoretical model
based on scalar diffraction theory.

Previous studies of the phase distribution of dif-
fracted fields include a study using the qualitative co-
herent background method described by Zernike6 and
a study by Harris and Givens7 using a holographic
technique. Our results are similar to those of the latter
authors but extend further into the geometrical shadow
region.

The technique we present here is applicable to a
number of related questions, such as the measurement
of the phase distribution in a focal region, a problem of
considerable historical interest.8 Measurements of the
phase distribution in the focal region of an aberrated
optical system could prove useful in the field of optical
aberration testing. Finally, it should be possible to
measure the amplitude and phase of the diffracted light
at large diffraction angles and thereby to test for dif-
ferences between various formulations of diffraction
theory.
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Fig. 1. (a) Theoretical phase distribution of a wave diffracted from a straightedge as a function of the normalized coordinate w. (b) Experi-

mental phase distribution as measured by the ac interferometer.

?O Theoretical Phase Distribution

0 i Figure 1(a) shows the predicted phase distribution
for the field diffracted from a straightedge for the case
of small diffraction angles. In this limit the predictions
of the Kirchhoff and Rayleigh-Sommerfeld theories are
identical. For an incident field Uo(r) = A exp(ikr)/r
emanating from 'a point source Po, the diffracted wave
at point P (see Fig. 2) is given by9

Semi infinite
Opaque screen A exp(ik)(r' + s') [C(w) + /2] + [S(w) + '/2h

U(P) 2r+ s')

Fig. 2. Definition of the distances r', s', and x and the angle 6 used
in the theory of Fresnel diffraction by a straightedge. P denotes a

point source, and P denotes a point of observation.

- iI[C(w) + 1/2] - [S(W) + 1/2]. (1)

Here C(w) and S(w) are the Fresnel integrals expressed
as functions of the dimensionless parameter w given
by

w = [ (1 + 1)]1/2 X cos. (2)

The phase of the field given by Eq. (1) is thus

0 = arctan -(W-)-
+ S(w) + C(w)
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Fig. 3. Mach-Zehnder interferometer with a knife-edge in one arm.
The irradiance from the other arm has been reduced to enhance the
visibility of the figures in the dark region of the diffraction pattern.
Mirror M2 is mounted on a piezoelectric ceramic. Two detectors are

placed in the fringe pattern. One detector scans across the fringe
pattern, while the other serves as a fixed reference.

(3)

and it is this function which is plotted as the theoretical
curve in Fig. 1(a). The argument w is given by Eq. (2)
with 6 0 0 and in the limit of r' -X corresponding to
our well-collimated laser beam.
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fringes are observed. (Of course, the intensity modu-
lation of the' diffraction pattern is observed.)

In order to measure accurately small phase variations
say smaller than X/10, it is useful to employ the tech-
nique of ac interferometry.10 In this method the posi-
tion of mirror Ml is modulated by applying a voltage to
the piezoelectric ceramic on which the mirror is
mounted. The phase of the reference beam is thus al-
ternately decreased and increased (by 87r rad total
change) as the mirror moves in and out. The ceramic
is driven at 100 Hz by the triangular waveform seen in
Fig. 5(a). If'a detector is placed at reference point C in
the observation plane, the irradiance onto the detector
and, therefore, the voltage response of the detector
varies as shown in Fig. 5(b). If a second detector D is
placed a small distance from C, the electrical signal from
C will have the same functional form as that from D but
will, in general, be shifted in phase relative to that from
D. This electrical phase difference is equal to the op-
tical phase difference of the diffracted wave front at
points C and D. The phase structure of the diffraction
pattern can thus be determined as D is scanned across
the interference pattern. Locally, the measured phase,
of the optical field is a number between 0 and 27r, but
the electronics possess the ability to count fringes and
thus to measure the optical phase without this 27r am-
biguity.

The interferometer uses the 1.0-W, 0.5145-gm line
of an Ar-ion laser as a light source. This beam passes
through a spatial filter to eliminate beam irregularities

V

Fig. 4. (a) Photograph of the diffraction pattern due to Fresnel
diffraction by a straightedge. (b) Interferogram formed by the in-
terference of the diffraction pattern of (a) with a reference plane wave.
The rapidly changing phase in the geometrical shadow region appears

as a series of fringes.
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Instrumentation

The phase structure of any diffraction pattern can be
made visible by combining the diffracted field with a
reference field whose phase fronts are plane. If these
two fields are coherent with respect to each other, the
phase of the diffracted wave will appear as fringes in the
resulting interference pattern. In Fig. 3, for example,
a straightedge (K.E.) is placed in one arm of a Mach-
Zehnder interferometer. The diffracted wave front is
combined with a reference wave front at the second
beam'splitter BS2. If the resultant interference pattern
is'magnified, fringes are seen in' the geometric shadow
of the knife-edge pattern, as shown in Fig. 4. Each
fringe represents a 2 phase change. In this system
over twenty fringes are seen. In the bright section of
the diffraction pattern, the phase changes are ap-
proximately 150 (X/20), and, therefore, no interference
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Fig. 5. Three electrical signals of ac interferometry: (a) voltage on
piezoelectric ceramic; (b) output of detector at C; and (c) output of

detector at D.
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and is collimated at a diameter of 50 mm to approximate
the infinite plane wave assumed by our theoretical
model. The diffracting screen is a razor blade selected
to produce a diffraction pattern appearing clean on vi-
sual inspection. The diffracted field is examined at a
distance of 75 mm from the screen by a 40X microscope
objective, which produces an enlarged image on our
detection plane.

Limitations to Measurement Sensitivity
The finite size of the detector limits the spatial and,

therefore, the phase resolution. The effect is to con-
volve the detector area with the fringe pattern. We
have enlarged our interference pattern so that the finite
size of our detector has only a minimal effect (X/50) on
our phase resolution.

A serious problem is the vibration of the interfer-
ometer components. Accurate measurements are
possible only when the interferometer is vibrationally
isolated from its environment. An additional problem
results from thermal instabilities in the interferometer
from air currents. This is reduced by shielding the in-
terferometer. The deleterious effect of these fluctua-
tions is minimized by continuously subtracting the
phase measured by the reference detector from that
measured by the scanning detector. Localized fluctu-
ations are not eliminated by this technique and typically
produce phase errors of the order of X/100.

A number of tests have been performed to determine
the reproducibility of the total apparatus. The results
of one such test are shown in Fig. 6 where two scans of
the same wave front are overlaid. The maximum dif-
ference of the scans is X/128. This deviation is believed
to be due to the thermal fluctuations within the inter-
ferometer. These two scans were separated by a time
interval of about 2 min.

Results
Using the apparatus shown in Fig. 3 we have been

able to measure the phase distribution of the optical
field diffracted from a straightedge. The resulting
curve is shown in Fig. 1(b) and is compared with the
theoretical curve shown above it. Within the limita-
tions imposed by the noise in the experimental curve,
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Fig. 6. Stability of the ac interferometer is illustrated by a double
trace of the same wave front.

there is good agreement between the experimental curve
and the theoretical curve based on scalar diffraction
theory. The comparison is limited primarily by our
uncertainty in locating the origin (w = 0) of the mea-
sured curve. We have thus aligned the theoretical and
experimental curves by eye for the best qualitative
agreement.

In the illuminated region (w > 0), the rms phase noise
(including random and statistical errors) is 10° or 0.03
wavelength. Here one can nearly resolve the weak
phase oscillations (of maximum amplitude 20°) seen in
the theoretical curve. In the geometrical shadow region
(w < 0), scalar diffraction theory predicts that the phase
is a monotonically increasing function of w. With the
exception of several noise spikes, the data show this
predicted monotonic behavior. We note that for ease
in display the continuously varying phase has been
plotted as a broken curve defined only in the range of
-r fo wr. The rms phase uncertainty of 0.03A is due
primarily to systematic errors caused by such effects as
stray reflections and ripples or scratches on the optical
components of the interferometer. The random error
in these measurements is approximately 0.01X as dis-
cussed previously.

At the level of sensitivity which we were able to ob-
tain, no discrimination between various formulations
of scalar diffraction theory is possible. More exacting
measurements should be able to show this difference.
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